

Protrust AS

Professionals you can TRUST!

Technical Competency Assessment for Drilling & Completions personnel

Protrust has developed a web-based competency assessment and verification system designed for the following purposes:

- Technical screening of applicants before hiring (mature hires).
- Competency Assessment of existing staff for the purpose of identifying competency gaps, developing training programs and allocating the right people to critical positions.
- Knowledge assessment to support promotion processes.

Technical Competency Assessment for Drilling & Completions personnel

Business drivers (new hires):

- A CV may not tell the full story and is not an assurance for technical competency.
- There are limited options available for formal and systematic technical competency assessment systems – Protrust is the only provider for D&C personnel.
- A large number of experienced staff have left the industry.
- Hiring staff without the required competency may turn out very costly and may have catastrophic consequences.

Technical Competency Assessment for Drilling & Completions personnel

Business drivers (existing employees):

- Many companies do not have a formal competency assessment system in place.
- Managers have insufficient knowledge of the skillset of their team members.
- Personnel may be assigned to jobs they are not qualified for, resulting in incidents, NPT events, poor performance, incomplete projects and financial overruns.

COMPASS ONLINE

The COMPASS test:

- Quiz based questionnaires with a large pool of multiplechoice questions and True/False statements.
- Questions are developed by industry experts and focused on what should have been learned through experience – not at university.
- Answers are aimed to be non-disputable and not company or location specific.
- Time limit per quiz no time to Google the answers.

COMPASS ONLINE

The COMPASS Modules:

- Module 1: Drilling Equipment
- Module 2: Drilling Operations
- Module 3: Well Control
- Module 4: Fluids
- Module 5: Cement

- Module 6: Barriers & Well Integrity
- Module 7: Completions
- Module 8: ERD
- Module 9: HPHT
- Module 10: Acronyms

> 600 questions with > 1500 answer options in the quiz database.

Technical Competency Assessment and Verification

Example process for new hires:

- The client screens the applicant's CV and shortlist candidates with apparent similar background.
- The client advises the shortlisted applicants to complete the Protrust COMPASS test (the cost should be reimbursed to the client).
- The applicants complete the COMPASS test online and receives a COMPASS report from Protrust.
- The applicant forwards the report to the client.
- The client calls the candidates with best score for F2F interview (and re-test if desired).

Technical Competency Assessment and Verification

Example process for existing employees:

- Employees completes the COMPASS test online and forward the COMPASS report to management.
- Management may use this to:
 - Identify competency gaps.
 - Assign staff to projects that fit the competency profile.
 - Develop individual training programs.
 - Relocate or terminate staff.

Examples – Drilling Equipment

45. What kind of tool is this?

- Overshot
- Wash-over shoe
- Reverse circulation junk basket
- Core barrel

49. What type of equipment is this?

- Diverter
- Rotating Control Device
- Annular preventer
- Riser connector

Examples – Drilling Operations

A TCI bit with sealed bearings

A Milled tooth bit with open bearings

	What parameters contributes to the ECD?	6.	What are the most important fann reading for controlling ECD?
	Mud weight plus the pressure loss from TD of string to surface		O 60 - 600 RPM
	Mud weight plus total system pressure loss		30 - 60 RPM
	Mud weight plus the bit pressure loss		3 - 6 RPM
	Mud weight plus the bit's jet impact force		300 - 600 RPM
0.	A bit has an IADC code of 4-4-5, describe the bit	22.	How can you reduce the presence of angular cavings caused by shear failure of the wellbore?
	A diamond bit with 4" gauge, 4 blades and 5 nozzles		Improve mud rheology
	A PDC bit with 4" gauge, 4 blades and 5 nozzles		Balance mud activity with formation activity

Balance mud activity with formation activity

Improve mud inhibition

Increase the mud weight

Examples – HPHT

١.	What is understood by 'wellbore breathing' or 'ballooning 9.	What is understood by 'finger printing' connections?		
	Mudloss into- and flowback from faults	Determining flow back behavior through DP during connections		
	Casing balloons due to ECD effects	Oetermining flow back behavior to active when pumps are shut off		
	Incorrect interpretation of flowback on connections	Evaluation of connection procedures		
	Mudloss into- and flowback from micro fractures	O Determining optimum connection timing		
11.	What negative effect may a mud cooler have?	 Increasing connection gas is always a signal of increasing pore pressure 		
	Reducing mud viscosity	False		
	Reducing mud weight	○ True		
	Reducing wellbore integrity			
	Increased overall well cost			

Examples – ERD

What parameters are the most imp	portant for good hole cleaning?	17. Jars have the same effect	t in vertical and horizontal wellbores
High end rheology and ROP		False	
Fluid type and pipe rotation		True	
High end rheology, flow rate and p	ipe rotation		
Low end rheology, flow rate and pi	ipe rotation		
		20. Helical buckling is th	ree dimentional
		True	
5. What is SAG correction?		False	
Adding special chemicals to the	drilling fluid to prevent barite SAG		
A survey correction due to misal	ignment of the survey sensor		
A mud weight correction due to I	barite SAG	24. YP has no impact on I	nole cleaning or ECD
A survey correction from Grid to	True North	True	
		False	
		_	

COMPASS Competency Profile

Guidance on the results:

For more information - contact us on

mail@protrust-as.com

Thank You!

www.protrust-as.com